最佳答案:无一般解法,特殊情况除外(线性常系数微分方程,可化为线性常系数微分方程的方程欧拉方程,某些方程可有幂级数解法).
最佳答案:用幂级数法:设y=c0+c1x+c2x^2+...+cnx^n+...则y'=c1+2c2x+3c3x^2+...+ncnx^(n-1)y"=2c2+6c3x+
最佳答案:一般是已知一个特解y(x),然后用常数变异法C(x)*y(x)带入原方程化简求解的。一般都是猜吧,我接触的例题都是y(x)=x等简单函数的居多。我不用那本教材
最佳答案:设y=x*u是微分方程的解,则y'=u+xu',y''=2u'+xu'',代入方程,得u''=0,所以u=C1x+C2,所以微分方程的通解是y=xu=x(C1x
最佳答案:用MatLab解出来的通解是y =1/x*log(x-1)*C1+1/x*C2+1/2*(x^2+2*x+2*log(x-1))/x
最佳答案:C1+C2*e^(-x)+1/3x^3-x^2+2*x (C1,C2是常数)
最佳答案:解其对应的齐次常系数线性微分方程时,其解必定含有一个任意常数C,把常数C看作是个变量,并假定就是非齐次常系数线性微分方程的一个特解.将其代入非齐次常系数线性微分
最佳答案:能问的清楚一些么?这是解方程的结论,你到底哪步不懂,还是你根本就没解过这个方程,只想要一个大概的解释.