最佳答案:首先,一个函数的导数也是函数,对导函数求极限没有什么奇怪的.相信复习全书时,你们已经学习过拉格朗日公式了,该公式建立了函数改变量与导函数之间的关系,是利用导数研
最佳答案:是,可导的意思就是:左导数等于右导数.
最佳答案:不是,当x=1是,y有两个值和它对应,不满足一对多或者多对一的映射条件.
最佳答案:需要说明的是,你对右连续的定义理解错了.若函数f(x)右连续,则有 f(x)—>f(0)(x—>0+),也就是说当f(x)在X=0处右连续时,并不能说明f(x)
最佳答案:若f(x,y)在原点有极限,则(x,y)沿任何方式趋于原点(0,0)时,f(x,y)都有同样的极限值.注意上面是以任何方式.因此经常用这个结论的逆否命题来证明f
最佳答案:可导性都是用导数定义判断的。有不是用导数定义判断的吗?
最佳答案:哇,这个要用大学的极限做的吧分段点要兼顾两边,如果两边极限不等,那就不可导了,相等才可导
最佳答案:按定义按求导法则分别求分界点处的左右函数分界点是连续点时,求导函数在分界点处的极限值
最佳答案:不行,分段函数在分界点处一定要用定义求导.如果分界点处连续,有一条结论:若f(x)在x.的空心邻域内可导,并在x.处连续,并且lim x→x.f ' (x) =
最佳答案:当然可以 “直接判断有导数存在就可以判定连续了”,但求左右导数未必比求左右极限简单.
最佳答案:连续不一定可导可导一定连续在分界点存在单侧导数,即左导数和右导数在x=0时左导数=2e^2x=2右导数=2cos2x=2=左导数 即函数在分界点连续,存在导数,
最佳答案:在讨论分段函数在分界点处的可导性时,必须用左右导数的定义来判别.求分段函数的导数时,除了在分界点处的导数用导数定义求之外,其余点仍按初等函数的求导公式即可求得.