知识问答
登录后你可以
不限量看优质内容数百万级文库任意搜索精彩内容一键收藏
最佳答案:从你的疑问,感觉你似乎 混淆了 在一点连续或可导 与 在一点的邻域区间连续或可导如果函数在某点处可导,则一定在此点处连续.同样,如果函数在某区间可导,则一定在此
收藏:
0
点赞数:
0
回答:
3
最佳答案:f(x)=x^2sin(1/x) x=0时 f(x)=0函数连续一阶导数存在(x=0点用定义证明),但导数在x=0处不连续
收藏:
0
点赞数:
0
回答:
4
最佳答案:1,是;存在.2,等等,你这句“但是根据上面连续函数的概念,f(x)-f(△x)≠0”是怎么来的?注意到两个解释的过程是不一样的,既前者是x→x.,后者是x→△
收藏:
0
点赞数:
0
回答:
1
最佳答案:在一元的情况下,可导=可微->连续,可导一定连续,反之不一定.二元就不满足了 在二元的情况下,偏导数存在且连续,函数可微,函数连续;偏导数不存在,函数不可微,函
收藏:
0
点赞数:
0
回答:
1
最佳答案:在一元的情况下,可导=可微->连续,可导一定连续,反之不一定.二元就不满足了 在二元的情况下,偏导数存在且连续,函数可微,函数连续;偏导数不存在,函数不可微,函
收藏:
0
点赞数:
0
回答:
1
最佳答案:函数可微则这个函数一定连续,但连续不一定可微.多元函数可微则偏导数一定存在,可微比偏导数存在要求强 而偏导数连续可以退出可微,但反推不行
收藏:
0
点赞数:
0
回答:
1
最佳答案:很简单,第一间断点分段函数就都是这样的特例,如:f(x)=x(x≠0) 1(x=0)这样的函数,在x=0左连续,右连续,但函数在x=0这个点不连续,这是第一间断
收藏:
0
点赞数:
0
回答:
2
最佳答案:恩,的确从图像上基本上无法解释.我想你的原函数肯定是分段函数,在x不等于0时候,为XXX,在x=0时候,f=某个数使得函数连续.而且我相信你证明他在x=0可导不
收藏:
0
点赞数:
0
回答:
3
最佳答案:一元函数在某点的极限存在,则该函数不一定在该点连续;若函数在某点连续,则一定在该点存在极限;所以是必要非充分条件.
收藏:
0
点赞数:
0
回答:
1
最佳答案:解题思路:记F(x)=f(x)-f(x+1),利用f(x)的周期性可以证明F(0)+F(1)+…+F(2011)=0;然后利用连续函数的介值定理可以证明结论.记
收藏:
0
点赞数:
0
回答:
1
最佳答案:可微充分条件:偏导在一点存在,且连续可微必要条件:在某点可微,则关于每个自变量得偏导都存在
收藏:
0
点赞数:
0
回答:
2
最佳答案:连续的函数左右极限存在且相等是指lim (f(x))在x0出的左右极限存在且相等导数左右极限存在且相等是指,lim {(f(x)-f(x0)/(x-x0)}在x
收藏:
0
点赞数:
0
回答:
2
最佳答案:奇点就是偏导不存在的点,当然函数无定义肯定没偏导,也是属于奇点的,求采纳 是复变里的吧推广后的柯西积分定理和柯西积分公式条件一样,都是区域
收藏:
0
点赞数:
0
回答:
3
最佳答案:连续的函数左右极限存在且相等是指lim (f(x))在x0出的左右极限存在且相等导数左右极限存在且相等是指,lim {(f(x)-f(x0)/(x-x0)}在x
收藏:
0
点赞数:
0
回答:
2
最佳答案:有 狄利克雷函数D(x) = 1(x为有理数),0(x为无理数)狄利克雷函数的性质1.定义在整个数轴上.2.无法画出图像.3.以任何正有理数为其周期(从而无最小
收藏:
0
点赞数:
0
回答:
3
栏目推荐: 十位是3的数是多少 氢氧化铁溶于什么 恰好相反 分液后加入氢氧化钠 氧气占空气的多少 数学手抄报五年级上册 纳和氧反应方程式 氧化单位是什么 氨水硫酸铜溶液反应 高考a是多少分 初2英语上册