知识问答
最佳答案:首先增广矩阵的秩一定不小于系数矩阵的秩(因为这只不过是增加了一个列向量)。若增广矩阵的秩大于系数矩阵,则可通过高斯消去法将系数对角化,这将有0=b≠0的情况,矛
最佳答案:显然不对,Ax=0和Bx=0的解空间不一定有包含关系.举个例子A=0 0 00 1 00 0 1B=1 0 00 0 00 0 0
最佳答案:5 n=4,r(A)=3,Ax=0 的基础解系含 n-r(A) = 1 个线性无关的向量.Aa1=b,Aa2=b,Aa3=b,A[2a1-(a2+a3)]=02
最佳答案:解题思路:不难看出(1,1,…,1)T是方程的解,然后利用基础解系的定理,解的维度等于阶数减去秩可以得出基础解系的个数,然后求出基础解系.n阶矩阵A的各行元素之
最佳答案:解题思路:不难看出(1,1,…,1)T是方程的解,然后利用基础解系的定理,解的维度等于阶数减去秩可以得出基础解系的个数,然后求出基础解系.n阶矩阵A的各行元素之
最佳答案:解题思路:不难看出(1,1,…,1)T是方程的解,然后利用基础解系的定理,解的维度等于阶数减去秩可以得出基础解系的个数,然后求出基础解系.n阶矩阵A的各行元素之
最佳答案:解题思路:不难看出(1,1,…,1)T是方程的解,然后利用基础解系的定理,解的维度等于阶数减去秩可以得出基础解系的个数,然后求出基础解系.n阶矩阵A的各行元素之
最佳答案:因为 R(A)=n-1所以 R(A*) = 1, 且 |A|=0所以 A*x=0 的基础解系含 n-1 个向量.又因为 A*A=|A|E = 0所以 A 的列向
最佳答案:k(B+C-2A)+A其中k为任意常数A=k1×齐次解+特解B+C=k2×齐次解+2×特解所以方程的齐次解等于B+C-2A=(k2-2k1)×齐次解所以通解=c