知识问答
最佳答案:对齐次二阶方程x''+ax'+bx=0有特解x=0特征方程为p^2+ap+b=0若a^2-4b>0,特征方程有两不同实根p1,p2微分方程有通解x=exp{p1
最佳答案:1、对应的齐次线性方程的特征方程是r^2-3r+2=0,根是1.2.所以齐次线性方程的通解是y=C1*e^x+C2*e^(2x).因为λ=0不是特征方程的根,所
最佳答案:特征方程本身就是一个一元方程.高阶常系数齐次线性微分方程的特征方程是一个一元高次方程.这里的特征方程一定能够得到与特征方程的次数相同个数的解.对于一元一次和一元
最佳答案:方程:d^2(y)/d(x^2)+a*dy/dx+b*y=0解方程:z^2+a*z+b=0得出z1,z2若两者是重根,则得到基本解组,z1*exp(z1*t),
最佳答案:同济第六版《高等数学》上册p343-344.有很清晰的推导过程.简单说就是把f(x)变成负数的形式后,是e的指数形式,然后设特解是e的指数形式,最后还原到实数域
最佳答案:e^(ix)和e^(-ix)是此方程的两个无关解基,但是是复数域的解基,即y=C1e^(ix)+C2e^(-ix) (C1,C2为复数)要求其在实数范围内的解基
最佳答案:不用特别的去分,只要把握住,右侧函数是多项式乘指数的时候,看指数x的系数(比如说是t)是不是特征根就可以了,应该知道t不是特征根,设的时候k=0,t是特征根中的
最佳答案:令y' = v,y'' = v'y'' - 1/x · y' = xe^xv' - v/x = xe^x,e^∫ - 1/x dx = e^- ln|x| =
最佳答案:设y=x*u是微分方程的解,则y'=u+xu',y''=2u'+xu'',代入方程,得u''=0,所以u=C1x+C2,所以微分方程的通解是y=xu=x(C1x
最佳答案:用幂级数法:设y=c0+c1x+c2x^2+...+cnx^n+...则y'=c1+2c2x+3c3x^2+...+ncnx^(n-1)y"=2c2+6c3x+
最佳答案:This paper mainly studies the solution and application of second order ordinary
栏目推荐: 组合公式计算 高中物理的三角函数 小学数学方程50道 高中二次方程题 二氧化碳有固体么 能吸收二氧化碳的 小白兔采蘑菇 四年级下册语文单元作文 good和well的区别用法 nice的中文 作文----令我敬佩