解题思路:利用切线方程基本性质即可求出.
由题意可知,要求f(x)在(6,f(6))处的切线方程,
需知道f(6),f′(6)
f(x)为周期为5的连续函数,它在x=1可导,
有f(1)=f(6),f′(6)=f′(1),
于是等式取x→0的极限有:f(1)=0
令sinx=t可得下列结果:
lim
x→0
f(1+sinx)−3f(1−sinx)
sinx=
lim
x→0
f(1+t)−3f(1−t)
t=
lim
x→0[
f(1+t)−f(1)
t+3
f(1−t)−f(1)
t]=4f′(1)=
lim
x→0
8x
sinx=8
∴f′(1)=2
故切线方程为:
y=2(x-6).
点评:
本题考点: 平面曲线的切线方程和法线方程的求法.
考点点评: 本题主要考查切线方程基本性质,属于基础题.