初二数学题先阅读某同学解下面分式方程的具体过程.解方程:(1/x-4)+(4/x-1)=(2/x-3)+(3/x-2)(
1个回答

若原题为(1/x-4)+(4/x-1)=(2/x-3)+(3/x-2) 只要X不等于0,可取任意数,都可满足原方程,故,定义为X=5/2,显然比较片面.

若原题为1/(x-4)+4/(x-1)=2/(x-3)+3/(x-2)

直接求解即可:

(5x-17)/(x-4)*(x-1)=(5x-13)/(x-3)*(x-2)

(5x-17)/(x-4)*(x-1)=(5x-17+4)/(x-3)*(x-2)

(5x-17)/(x-4)*(x-1)=(5x-17)/(x-3)*(x-2)+ 4/(x-3)*(x-2)

(5x-17)/(x-4)*(x-1)-(5x-17)/(x-3)*(x-2)= 4/(x-3)*(x-2)

(5x-17){1/(x-4)*(x-1)-1/(x-3)*(x-2)}= 4/(x-3)*(x-2)

(5x-17){1/(x^2-5x+4)-1/(x^2-5X+6)}= 4/(x^2-5X+6)

(5x-17){1/(x^2-5x+4)-1/(x^2-5X+6)}= 4/(x^2-5X+6)

(5x-17){2/(x^2-5x+4)*(x^2-5X+6)}= 4/(x^2-5X+6)

方程式两边同时乘以(x^2-5X+6),并除以2,得:

(5x-17)/(x^2-5x+4)=2 化简后的

2x^2-15x+25=0

(2x-15/2)^2=25/4

所以2x-15/2=+5/2或-5/2

x=10或,x=5/2