一:若O和F点分别是椭圆x^2/4+y^2/3=1的中心和左焦点,点P为椭圆上的任意一点,则向量OPX向量FP的最大值是
1个回答

1、当P点在右顶点时二向量积有最大值,

c=√(4-3)=1,

OP•FP=|a+c|*|a|*cos0°=|(2+1)|*2=6.

2、c^2=a^2-b^2=1,c=1,

直线方程为:y=2(x-1),2x-y-2=0,

原点至直线距离d=|0-0-2|/√(4+1)=2/√5,

x^2/5+(2x-2)^2/4=1,

3x^2-5x=0,

x1=0,y1=-2,

x2=5/3,y2=4/3,

|AB|=√[(x1-x2)^2+(y1-y2)^2]=5√5/3,

S△AOB=|AB|*d/2=5/3.

以BA为X轴,BA中点的垂线为Y轴,建立直角坐标系,

则B(-c,0),A(c,0),

|BA|=2c,根据椭圆定义,|CA|+|CB|=2a,

|CA|/|CB|+1=2a/|CB|,

tanB+1=2a/|CB|,

3/4+1=2a/|CB|,

e=c/a,a=c/e,

secB=√(1+(tanB)^2)=5/4,

cosB=4/5,

7/4=2c/(e*|CB|=2/(e*CB/c)=1/(e*|CB|/2c)=1/(e*cosB)=1/(4e/5),

5/(4e)=7/4,

e=5/7,

离心率e=5/7.

4、 设椭圆方程为:x^2/a^2+y^2/b^2=1,

左右焦点坐标F1(-c,0),F2(c,0),

P(x0,y0),

(x0+c)^2+y0^2=48,(1)

(x0-c)^2+y0^2=12,(2)

(1)-(2)式,

4cx0=36,

x0=9/c,

根据三角形角平分线比例线段的性质,

|PF1|/|PF2|=|F1Q|/|QF2|,

|F1Q|=1+c,|QF2|=c-1,

4√3/(2√3)=(1+c)/(c-1),

c=3,

x0=9/3=3,

y0=±2√3,

b^2=a^2-c^2=a^2-9,

椭圆方程为:x^2/a^2+y^2/(a^2-9)=1,

将P点坐标代入椭圆方程求出a,

a^4-30a^2+81=0,

(a^2-27)(a^2-3)=0,

a^2=27,a^2=3,

因c=3,故舍去a^2=3,

a^2=27,

则椭圆方程为:x^2/27+y^2/18=1.

5、设椭圆方程为x^2/a^2+y^2/b^2=1,(a>b>0),暂设焦点在X轴,

e=c/a=√3/2,c=√3a/2,b^2=a^2-c^2=a^2/4,

椭圆方程为:x^2/a^2+y^2/(a^2/4)=1,

y=-x/2-4,代入椭圆方程,

2x^2+16x+64-a^2=0,

根据韦达定理,

x1+x2=-8,x1*x2=32-a^2/2,

根据弦长公式,

|PQ|=√(1+k^2)(x1-x2)^2

=√(1+1/4)[(x1+x2)^2-4x1*x2]

=(1/2)√[5*(64-128+2a^2)]

=(1/2)√(10a^2-320)

=√10,

a=6,

b=3,

椭圆方程为:x^2/36+y^2/9=1,

若焦点在Y轴,一样可做.

6、设A(x1,y1),B(x2,y2),AB直线斜率k,

x1^2/16+y1^2/4=1,(1)

x2^2/16+y2^2/4=1,(2)

(1)-(2)式,

(x1^2-x2^2)/16+(y1^2-y2^2)/4=0,

1/4+[(y1-y2)/(x1-x2)]/{[(y1+y2)/2]/[(x1+x2)/2]}=0,

k=( y1-y2)/(x1-x2),

(y1+y2)/2和(x1+x2)/2为M点纵、横坐标,

1/4+k*(1/2)=0,

k=-1/2,

则直线方程为:(y-1)/(x-2)=-1/2,

即x+2y-4=0.

故存在这样的直线.