(2014•巴州区模拟)曲线y=2sin(x+[π/4])cos(x-[π/4])和直线y=[1/2]在y轴右侧的交点按
1个回答

解题思路:本题考查的知识点是诱导公式,二倍角公式及函数图象的交点,将y=2sin(x+[π/4])cos(x-[π/4])的解析式化简得y=sin(2x)+1,令y=[1/2],解得x=kπ+[3π/4]±[π/6](k∈N),代入易得|P2P4|的值.

∵y=2sin(x+[π/4])cos(x-[π/4])

=2sin(x-[π/4]+[π/2])cos(x-[π/4])

=2cos(x-[π/4])cos(x-[π/4])

=cos[2(x-[π/4])]+1

=cos(2x-[π/2])+1

=sin(2x)+1

若y=2sin(x+[π/4])cos(x-[π/4])=[1/2]

则2x=2kπ+[3π/2]±[π/3](k∈N)

x=kπ+[3π/4]±[π/6](k∈N)

故|P2P4|=π

故答案为:π

点评:

本题考点: 两角和与差的正弦函数;两角和与差的余弦函数;三角函数的周期性及其求法.

考点点评: 求两个函数图象的交点间的距离,关于是要求出交点的坐标,然后根据两点间的距离求法进行求解.