∫arctanxdx/x^2 上限是无穷,下限是1.怎么求啊
收藏:
0
点赞数:
0
评论数:
0
1个回答

求定积分:[1,+∞]∫arctanxdx/x²

令u=arctanx,则x=tanu,dx=du/cos²u,x=1时u=π/4;x→+∞时u=π/2;

故原式=[π/4,π/2]∫udu/(tan²ucos²u)=[π/4,π/2]∫udu/sin²u=[π/4,π/2][-∫udcotu]

=[π/4,π/2][-ucotu+∫cotudu]=[π/4,π/2][-ucotu+∫(cosu/sinu)du]

=[π/4,π/2][-ucotu+lnsinu]=(π/4)-ln(√2/2)=(π/4)+(1/2)ln2.

点赞数:
0
评论数:
0
关注公众号
一起学习,一起涨知识