已知一平面内的任意四点,其中任何三点都不在一条直线上,试问:是否一定能从这样的四点中选出三点构成一个三角形,使得这个三角
1个回答

解题思路:结论是以疑问形式出现的,不妨先假定是肯定的,然后推理.若推出矛盾,则说明结论是否定的;若推不出矛盾,则可考虑去证明结论是肯定的.

证明:能.(1)如图a,若四点A,B,C,D构成凸四边形.则必有一个内角≤90°.不妨设为∠A.这是因为,假设四个内角都大于90°,则360°=∠A+∠B+∠C+∠D>4×90°=360°.矛盾.则∠BAC+∠CAD≤90°.则∠BAC与∠C...

点评:

本题考点: 反证法;三角形内角和定理.

考点点评: 本题结合角的比较考查反证法,解此题关键要懂得反证法的意义及步骤.

反证法的步骤是:(1)假设结论不成立;

(2)从假设出发推出矛盾;

(3)假设不成立,则结论成立.

在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.