若不等式1/(n+1)+1/(n+2)+……1/(3n+1)>a/24对一切正整数n都成立,求正整数a的最大值,并证明结
1个回答

f(n)=1/(n+1) + 1/(n+2) +1/(n+3) +……+1/(3n+1)

f(n+1)=1/(n+2) + 1/(n+3) +1/(n+4) +……+1/[3(n+1)+1]

f(n+1)-f(n)=1/(n+1) - 1/(3n+2)-1/(3n+3)-1/(3n+4)>0

所以函数f(n)对于n为正整数时为单调增函数

所以原不等式等效于a/2425/24

当k=n+1时

由于

9(n+1)^2=9n^2+18n+9>9n^2+18n+8=(3n+2)(3n+4)

9(n+1)^2/[(3n+2)(3n+4)]-1>0

左侧为

1/[(n+1)+1]+1/[(n+1)+2]+1/[(n+1)+3]+...+1/[3(n+1)+1]

=1/(n+1)+1/(n+2)+1/(n+3)+...+1/(3n+1)+{1/(3n+2)+1/(3n+3)+1/(3n+4)-1/(n+1)}

=1/(n+1)+1/(n+2)+1/(n+3)+...+1/(3n+1)+{6(n+1)/[(3n+2)(3n+4)]-2/(3n+3)}

=1/(n+1)+1/(n+2)+1/(n+3)+...+1/(3n+1)+2/(3n+3)*{9(n+1)^2/[(3n+2)(3n+4)]-1}

>1/(n+1)+1/(n+2)+1/(n+3)+...+1/(3n+1)>25/24.

结论成立.

这样可以么?