计算I=∫∫D |(x+y)/2 - x^2 - y^2| dxdy,其中D={(x,y):x^2+y^2≤1}
1个回答

f(x,y) = (x+y)/2-x^2-y^2 = 1/8-(x-1/4)^2+(y-1/4)^2,

f(x,y)=0 即圆 D1:(x-1/4)^2+(y-1/4)^2=1/8,

在 D1 内 f(x,y)≤0,在 D 内且 D1 外 f(x,y)≥0,则

I =∫∫|(x+y)/2-x^2-y^2|dxdy

=∫∫[(x+y)/2-x^2-y^2]dxdy

-∫∫[(x+y)/2-x^2-y^2]dxdy

=∫∫[(x+y)/2-x^2-y^2]dxdy

-2∫∫[(x+y)/2-x^2-y^2]dxdy

=∫dt∫[r(cost+sint)/2-r^2]rdr

-2∫dt∫[r(cost+sint)/2-r^2]rdr

=∫[(cost+sint)/6-1/4]dt

-2∫dt[r^3(cost+sint)/6-r^4/4]

=∫[(cost+sint)/6-1/4]dt

-2∫[(cost+sint)^4/192]dt

= [(sint-cost)/6-t/4]

-(1/96)∫[1+2sin2t+(sin2t)^2]dt

= -π/2-(1/96)∫[3/2+2sin2t-(1/2)cos4t]dt

= -π/2-(1/96)[3t/2-cos2t-(1/8)sin4t]

= -π/2-π/64 = -33π/64.