什么是正交矩阵举个例子,说明特征,不要定义.
1个回答

如果:AA'=E(E为单位矩阵,A'表示“矩阵A的转置矩阵”.)或A′A=E,则n阶实矩阵A称为正交矩阵

例如举一个最简单的例子

1 0 1 0

矩阵A:0 1 A的转置:0 1 此时 AA'=E

故A本身是正交矩阵

由于AA'=E 由逆矩阵定义 若AB=E 则B为A的逆矩阵 可以知道 A'为A的逆矩阵

也就是说正交矩阵本身必然是可逆矩阵

若A是正交矩阵则A的n个行(列)向量是n维向量空间的一组标准正交基【即线性不相关】