tanB=1/2,tanC=-2
所以sinB=√5/5,sinC=2√5/5
cosB=2√5/5 ,cosC=-√5/5
sinA=sin(B+C)=sinBcosC+cosBsinC=3/5
由正弦定理a/sinA=b/sinB=c/sinC=2R
ab/(sinAsinB)=(c/sinC)^2
ab=sinAsinB*(c/sinC)^2
面积=absinC/2=1=sinAsinB*c^2/sinC/2=1
c=(2/3)√15
再利用正弦定理求出a,b你自己算
R=c/(2sinC)=(5/3)√3
面积自己算