原题是:(x^2)y-(e^2x)=siny 求dy/dx 还有一道题:原题:已知I(α)=∫[α^2,α] sinαx
4个回答

x²y-e^(2x) = siny

dy/dx * x² + 2x * y - e^(2x) * 2 = cosy * dy/dx

dy/dx * x² - cosy * dy/dx = 2e^(2x) - 2xy

dy/dx = 2[e^(2x)-xy]/(x²-cosy)

L = ∫(α,α²) sin(αx) / x dx

dL/dα = dα²/dα * sin(α*α²) / α² - d(α)/dα * sin(α*α) / α

= 2αsin(α³)/α² - sin(α²)/α

= 2sin(α³)/α - sin(α²)/α

= (1/α)[2sin(α³)-sin(α²)]

这题用到的公式是:

d/dx ∫(x₁->x₂) f(t)dt = d(x₂)/dx * f(x₂) - d(x₁)/dx * f(x₁)