已知直线l与椭圆C:x^2/25 y^2/9=1交于A、B两点,则过P(1,2)的弦AB的中点轨迹为
1个回答

设弦交椭圆于点A(x1,y1)B(x2,y2)

椭圆方程:x²/25+y²/9=1,

x1²/25+y1²/9=1

x2²/25+y2²/9=1

两式相减

(x1²-x2²)/25+(y1²-y2²)/9=0

(x1+x2)(x1-x2)/25+(y1+y2)(y1-y2)/9=0

(y1-y2)/(x1-x2)=-9(x1+x2)/[25(y1+y2)]

设中点为P(x,y)

则x1+x2=2x,y1+y2=2y,

所以(y1-y2)/(x1-x2)=-9x/(25y).

又根据斜率公式可知:(y1-y2)/(x1-x2)=(y-2)/(x-1),

所以-9x/(25y) =(y-2)/(x-1),

即9x(x-1)+25y(y-2)=0,

9(x-1/2)²+25(y-1)²=109/4即为所求.