f(1)=f(1)+f(1),得:f(1)=0
当x≠0时,f(1/x)+f(x)=f(1)=0
因此f(1/x)与f(x)互为相反数,即f(1/x)=-f(x)
f '(x)=lim[h→0] [f(x+h)-f(x)]/h
=lim[h→0] [f(x+h)+f(1/x)]/h
=lim[h→0] f[(x+h)/x]/h
=lim[h→0] f(1+h/x)/h
=lim[h→0] [f(1+h/x)-f(1)]/h
=(1/x)lim[h→0] [f(1+h/x)-f(1)] / (h/x)
=(1/x)f '(1)
=1/x
若有不懂请追问,如果解决问题请点下面的“选为满意答案”.