(2/x+lnx)f(t)dt的定积分
1个回答

首先换元,再利用变上限积分求导

令u=x^2 -t^2.则t=√(x^2-u).dt=d√(x^2-u)=1/2•1/√(x^2-u)du

当t=0时,u=x^2.当t=x时,u=0

∴∫(0→x)tf(x^2 -t^2)dt

=∫(x^2→0)√(x^2-u) f(u)d√(x^2-u)

=∫(x^2→0)√(x^2-u) f(u)•(1/2•1/√(x^2-u))du

=∫(x^2→0) f(u)•1/2du

=1/2∫(x^2→0) f(u)du

d/dx•∫(0→x)tf(x^2 -t^2)dt

=d/dx•(1/2∫(x^2→0) f(u)du)

=(1/2∫(x^2→0) f(u)du)′

=1/2•f(x^2)(x^2)′

=1/2•f(x^2)•2x

=xf(x^2)