如图,△ABC中,AB=AC,AD是△ABC外角的平分线,已知∠BAC=∠ACD.
1个回答

解题思路:(1)求出∠B=∠ACB,根据三角形外角性质求出∠FAC=2∠ACB=2∠DAC,推出∠DAC=∠ACB,根据ASA证明△ABC和△CDA全等;

(2)推出AD∥BC,AB∥CD,得出平行四边形ABCD,根据∠B=60°,AB=AC,得出等边△ABC,推出AB=BC即可.

证明:(1)∵AB=AC,

∴∠B=∠ACB,

∵∠FAC=∠B+∠ACB=2∠ACB,

∵AD平分∠FAC,

∴∠FAC=2∠CAD,

∴∠CAD=∠ACB,

∵在△ABC和△CDA中

∠BAC=∠DCA

AC=AC

∠DAC=∠ACB,

∴△ABC≌△CDA(ASA);

(2)∵∠FAC=2∠ACB,∠FAC=2∠DAC,

∴∠DAC=∠ACB,

∴AD∥BC,

∵∠BAC=∠ACD,

∴AB∥CD,

∴四边形ABCD是平行四边形,

∵∠B=60°,AB=AC,

∴△ABC是等边三角形,

∴AB=BC,

∴平行四边形ABCD是菱形.

点评:

本题考点: 菱形的判定;平行线的性质;全等三角形的判定与性质;等腰三角形的性质;等边三角形的判定与性质;平行四边形的判定.

考点点评: 本题考查了平行线的性质,全等三角形的性质和判定,菱形的判定,等边三角形的性质和判定,等腰三角形的性质的应用,主要考查学生运用性质进行推理的能力,题目比较好,综合性也比较强.