解题思路:由CD平分∠ACB,可得∠ACD=∠BCD,又DE∥BC,所以,∠EDC=∠BCD,即∠ECD=∠EDC,所以,△ECD是等腰三角形,CE=DE,又AE=5,DE=7,即可求得;
∵由CD平分∠ACB,
∴∠ACD=∠BCD,
又∵DE∥BC,
∴∠EDC=∠BCD,即∠ECD=∠EDC,
∴△ECD是等腰三角形,
∴CE=DE,
又∵AE=5,DE=7,
∴AC=AE+EC=5+7=12;
答:AC的长是12.
点评:
本题考点: 等腰三角形的判定与性质;平行线的性质.
考点点评: 本题主要考查了等腰三角形的判定与性质和平行线的性质,知道两边相等的三角形是等腰三角形,两直线平行,内错角相等.