设函数f(x),g(x)在点x=0的某个领域内连续,且limx->0 g(x)/x=-1,limx->0 f(x)/{g
1个回答

证明:由(x→0)limg(x)/x=-1 (极限为-1,分母趋于0,则分子必趋于0)

可知(x→0)limg(x)=0 即g(0)=0

于是(x→0)lim[g(x)-g(0)]/(x-0)=-1

则g(x)在该邻域内可导且g'(0)=-1

(x→0)limf(x)/g²(x)=2

因为(x→0)limg²(x)=0

则(x→0)limf(x)=0

f(0)=0

对(x→0)limf(x)/g²(x)=2进行变形

(x→0)limf(x)/g²(x)

=(x→0)lim[f(x)/x][x²/g(x)]

=(x→0)lim[f(x)/x²]•(x→0)limx²/g(x) (变成两个极限之积,并对右边的极限用洛必达法则)

=(x→0)lim[f(x)/x²]•(x→0)limx/g(x)•(x→0)lim1/g'(x)

=(x→0)lim[f(x)/x²]•(-1)•(-1)

=2

因此f(x)=2x²+o(x)

于是可以得到(x→0)limf(x)/x=0

即f'(0)=0

即证