已知函数f(x)=|lgx|.若a≠b且,f(a)=f(b),则a+b的取值范围是(  )
1个回答

解题思路:由已知条件a≠b,不妨令a<b,又y=lgx是一个增函数,且f(a)=f(b),故可得,0<a<1<b,则 lga=-lgb,再化简整理即可求解;或采用线性规划问题处理也可以.

(方法一)因为f(a)=f(b),所以|lga|=|lgb|,不妨设0<a<b,则0<a<1<b,∴lga=-lgb,lga+lgb=0∴lg(ab)=0∴ab=1,又a>0,b>0,且a≠b∴(a+b)2>4ab=4∴a+b>2故选C.(方法二)由对数的定义域,设0<a...

点评:

本题考点: 函数的值域;函数的图象与图象变化;对数函数的单调性与特殊点.

考点点评: 本小题主要考查对数函数的性质、函数的单调性、函数的值域,考生在做本小题时极易忽视a的取值范围,根据条件a>0,b>0,且a≠b可以利用重要不等式(a2+b2≥2ab,当且仅当a=b时取等号)列出关系式(a+b)2>4ab=4,进而解决问题.