答:
(1)
bsin(π/6+C)+ccos(π/3+B)=acosA
根据正弦定理:
a/sinA=b/sinB=c/sinC=2R,a,b和c代入上式得:
sinBsin(π/6+C)+sinCcos(π/3+B)=sinAcosA
(√3/2)sinBsinC+(1/2)sinBcosC+(1/2)sinCcosB-(√3/2)sinCsinB=sinAcosA
所以:sin(B+C)=sin2A
所以:B+C=2A
因为:A+B+C=180°
所以:A=60°
(2)B+C=120°
sinB+sinC
=sinB+sin(120°-B)
=2sin60°cos(B-60°)
=√3cos(B-60°)
所以:当B-60°=0即B=C=60°时,sinB+sinC最大值为√3