设直线方程为:y=kx+b,
用待定系数法,x=-1,y=2,
2=-k+b,
k=b-2,
b=k+2
方程为:y=kx+k+2,因在Y轴正方向,故k+2>0,
令x=0,
|OB|=k+2,
令y=0.
|AO|=|(k+2)/k|=|1+2/k|,
因AB和X轴夹角为锐角,故k>0,
|AO|=1+2/k,
S△ABO=(1/2)*|AO|*|OB|
=(1/2)*(1+2/k)(k+2)
=(1/2)*(k+4/k+4),
根据均值不等式,
k+4/k≥2√(k*4/k)=4,
∴S△ABO(min)=(1/2)(4+4)=4.
△AOB面积的最小值为4,
k+4/k=4,
k^2-4k+4=0,
(k-2)^2=0,
k=2,
∴方程为:y=2x+4.
2、由前所述,
方程为:y=kx+k+2
|OB|=k+2,
|AO|=|(k+2)/k|=1+2/k,
|OB|+|OA|=k+2+1+2/k=k+2/k+3,
根据均值不等式,
k+2/k≥2√(k*2/k)=2√2,
∴(|OB|+|OA|)(min)=2√2+3.
k+2/k=2√2,
k^2-2√2k+2=0
(k-√2)^2=0,
k=√2,
∴直线方程为:y=√2x+2+√2.