已知直线l经过点P(-1,2),与x轴的负半轴交于点A,与y轴的正半轴交于点B,O为坐标原点
1个回答

设直线方程为:y=kx+b,

用待定系数法,x=-1,y=2,

2=-k+b,

k=b-2,

b=k+2

方程为:y=kx+k+2,因在Y轴正方向,故k+2>0,

令x=0,

|OB|=k+2,

令y=0.

|AO|=|(k+2)/k|=|1+2/k|,

因AB和X轴夹角为锐角,故k>0,

|AO|=1+2/k,

S△ABO=(1/2)*|AO|*|OB|

=(1/2)*(1+2/k)(k+2)

=(1/2)*(k+4/k+4),

根据均值不等式,

k+4/k≥2√(k*4/k)=4,

∴S△ABO(min)=(1/2)(4+4)=4.

△AOB面积的最小值为4,

k+4/k=4,

k^2-4k+4=0,

(k-2)^2=0,

k=2,

∴方程为:y=2x+4.

2、由前所述,

方程为:y=kx+k+2

|OB|=k+2,

|AO|=|(k+2)/k|=1+2/k,

|OB|+|OA|=k+2+1+2/k=k+2/k+3,

根据均值不等式,

k+2/k≥2√(k*2/k)=2√2,

∴(|OB|+|OA|)(min)=2√2+3.

k+2/k=2√2,

k^2-2√2k+2=0

(k-√2)^2=0,

k=√2,

∴直线方程为:y=√2x+2+√2.