a2+a1=4+1=5
a2=5-a1=5-2=3
a(n+1)+an=4n+1
a(n+2)+a(n+1)=4(n+1)+1
[a(n+2)+a(n+1)]-[a(n+1)+an]=a(n+2)-an=4(n+1)+1-(4n+1)=4,为定值
数列奇数项是以2为首项,4为公差的等差数列,偶数项是以3为首项,4为公差的等差数列
(1)
n为奇数时,n-1为偶数,奇数项共(n-1)/2 +1=(n+1)/2项,偶数项共(n-1)/2项.
Sn=2[(n+1)/2]+[(n+1)/2][(n+1)/2 -1]×4/2 +3[(n-1)/2]+[(n-1)/2][(n-1)/2 -1]×4/2
=n+1+(n²-1)/2+3(n-1)/2 +(n²-4n+3)/2
=n² +n/2 +1/2
(2)
n为偶数时,奇数项共n/2项,偶数项共n/2项
Sn=2(n/2)+(n/2)(n/2 -1)×4/2 +3(n/2)+(n/2)(n/2 -1)×4/2
=2n/2 +n(n-2)/2+3n/2 +n(n-2)/2
=n²+ n/2
写成统一的形式:
Sn=n²+n/2 + [1-(-1)ⁿ]/4