已知数列a(n),a(n+1)+a(n)=4n+1,如果a(1)=2,求S(n)?
1个回答

a2+a1=4+1=5

a2=5-a1=5-2=3

a(n+1)+an=4n+1

a(n+2)+a(n+1)=4(n+1)+1

[a(n+2)+a(n+1)]-[a(n+1)+an]=a(n+2)-an=4(n+1)+1-(4n+1)=4,为定值

数列奇数项是以2为首项,4为公差的等差数列,偶数项是以3为首项,4为公差的等差数列

(1)

n为奇数时,n-1为偶数,奇数项共(n-1)/2 +1=(n+1)/2项,偶数项共(n-1)/2项.

Sn=2[(n+1)/2]+[(n+1)/2][(n+1)/2 -1]×4/2 +3[(n-1)/2]+[(n-1)/2][(n-1)/2 -1]×4/2

=n+1+(n²-1)/2+3(n-1)/2 +(n²-4n+3)/2

=n² +n/2 +1/2

(2)

n为偶数时,奇数项共n/2项,偶数项共n/2项

Sn=2(n/2)+(n/2)(n/2 -1)×4/2 +3(n/2)+(n/2)(n/2 -1)×4/2

=2n/2 +n(n-2)/2+3n/2 +n(n-2)/2

=n²+ n/2

写成统一的形式:

Sn=n²+n/2 + [1-(-1)ⁿ]/4