焦点在x轴上的双曲线的离心率是根号2,他的一条渐近线为l,一条抛物线为y^2=4x,焦点为f,l与抛物线相交与非原点的一
1个回答

双曲线的离心率是根号2,即e=c/a=根号2,c=根号2a,又a^2+b^2=c^2,则a^2+b^2=2a^2,所以a=b,双曲线的渐近线方程就为y=±x,不妨取为l的方程y=x(取y=-x结果一样)

抛物线的,焦点f的坐标为(1,0),

联立方程,y^2=4x和y=x,将y=x代入,y^2=4x,易得,x=0或x=4,由于p点非圆点,所以取x=4,代入y=x得y=4,所以p点坐标为(4,4),再由两点间距离公式得pf的长为根号下(4-0)^2+(4-1)^2=根号下25=5

pf的长为5