如图,△ABC中,E、D是BC边上的三等分点,F是AC的中点,BF交AD、AE于G,H,试求BG:GH:HF.
1个回答

过F作FN ∥ BC,交AE于M,AD于N,

∵F为AC中点,

∴FM是△AEC中位线,

∴MF=

1

2 CE,CE=2FM,

∵BD=DE=CE,

∴BE=2CE=4FM,

∵FM ∥ BC,

∴△FMH ∽ △BEH,

FH

BH =

FM

BE =

1

4 ,

∵FN是△ADC的中位线,

∴FN=

1

2 CD=CE=BD,

∵FN ∥ BC,

∴△FNG ∽ △BDG,

BG

GF =

BD

FN =

1

1 ,

∴BG=GF,

FH

BH =

1

4 ,

FH

BF =

1

5 ,

∴FH=

1

5 BF,

∵BG=

1

2 BF,HF=

1

5 BF,

∴GH=GF-HF=

1

2 BF-

1

5 BF=

3

10 BF,

∴BG:GH:HF=(

1

2 BF):(

3

10 BF):(

1

5 BF)=5:3:2.

1年前

5