如图,△ABC中,E、D是BC边上的三等分点,F是AC的中点,BF交AD、AE于G、F,则BG:GH:HF等于(  )
1个回答

设BC=6a,则BD=DE=EC=2a,作FM ∥ BC交AE于点M,

∵F是AC的中点,

∴MF=

1

2 EC=a,

∵FM ∥ BC,

∴△BEH ∽ △FMH,

HF

BH =

MF

BE =

a

4a =

1

4 ,则HF=

1

5 BF,

作DN ∥ AC交BF于点N,设AC=2b,则AF=CF=b,

∴△BDN ∽ △BCF,

BD

BC =

ND

CF =

BN

BF =

2a

6a =

1

3 ,

∴DN=

1

3 CF=

1

3 b,BN=

1

3 BF,

∵DN ∥ AC,

∴△DNG ∽ △AFG,

NG

GF =

DN

AF =

1

3 b

b =

1

3 ,

∴NG=

1

3 GF,即NG=

1

4 NF=

1

4 (BF-BN)=

1

4 (BF-

1

3 BF)=

1

6 BF,

∴BG=

1

3 GF+

1

6 GF=

1

2 BF,

∴GM=BF-BG-HF=BF-

1

2 BF-

1

5 BF=

3

10 BF,

∴BG:GH:HF=

1

2 BF:

3

10 BF:

1

5 BF=5:3:2.

故选C.

1年前

4