作示意图如上:
向左转|向右转
设△ABC外接圆半径为R,延长AO交圆于D;
|AB|*cosB/sinC=2R*cosB=CD,|AC|*cosC/sinB=2R*cosC=BD;
在AB上截取AE=CD,在AC上截取AF=BD,则:
(cosB/sinC)向量AB+(cosC/sinB)向量AC=向量AE+向量AF=向量AD' = 2m向量AO;
∵ ∠AED'=180°-∠A=180°-∠CDB,∴ △AED'≌△CDB,从而有 |AD'|=|BC|=2R*sinA;
对比向量AD'与2m向量AO可得:m=sinA,所以选B;