已知函数f(x)=sin(2x+π/6)+sin(2x-π/6)+cos2x+a,(1)求函数的最小正周期及单调
2个回答

第一个问题:

f(x)=sin2xcos(π/6)+cos2xsin(π/6)+sin2xcos(π/6)-cos2xsin(π/6)-cos2x+a

=2sin2xcos(π/6)-cos2x+a=2[sin2xcos(π/6)-cos2xsin(π/6)]+a

=2sin(2x-π/6)+a.

∴函数f(x)的最小正周期为2π/2=π.

第二个问题:

∵f(x)=2sin(2x-π/6)+a.∴当 2kπ-π/2≦2π-π/6≦2kπ+π/2 时,f(x)单调递增.

由2kπ-π/2≦2x-π/6≦2kπ+π/2,得:2kπ-3π/6+π/6≦2x≦2kπ+3π/6+π/6,

∴2kπ-2π/6≦2x≦2kπ+4π/6,∴kπ-π/6≦x≦kπ+π/3.

即函数f(x)的单调增区间是[kπ-π/6,kπ+π/3],其中k为整数.

第三个问题:

∵0≦x≦π/2 ,∴0≦2x≦π,∴-π/6≦2x-π/6≦π-π/6,

∴f(x)的最小值为2sin(-π/6)+a=-1+a=-2,∴a=-1