1:tana=-1/√3
由题意知,角a=330°=-30°=-π/6
2a=660°=720°-60°=-60°=-π/3
sin2a=-√3/2
tan2a=-√3
sin2a-tan2a=-3√3/2
2:f(x)=sin2xcosa+cos2xsina
=sin(2x+a)
=sin(2x-π/6)
因为sin2x的周期是π,在[-π/4,π/4] 区间单调递增;[π/4,3π/4] 区间单调递减
变成sin(2x-π/6)后,相当于把图像向坐标原点左侧移动π/6个单位,则单调增减区间就变成了:
[-π/4-π/6,π/4-π/6] 区间单调递增;[π/4-π/6,3π/4-π/6] 区间单调递减
化简后就是
[-5π/12,π/12] 区间单调递增;[π/12,7π/12] 区间单调递减
据此,判断出f(x)=sin(2x+a)在[0,2π/3]上的单调递增区间为[0,π/12]和[7π/12,2π/3]