以AE,AC为邻边,作平行四边形EACP,
以DE,DB为邻边,作平行四边形BDEQ,
PC,EA平行且相等,BQ,DE平行且相等,所以,PC,BQ平行且相等,
BQCP是平行四边形,
BC,PQ相互平分,BC,PQ交于BC中点F.
EP=AC,EQ=DB,已知AC=BD,所以EP=EQ,
EF是等腰三角形EPQ底边上的中线,所以,∠PEF=∠QEF,
AC‖EP,∠AMN=∠PEF,
BD‖EQ,∠BNM=∠QEF,
∠AMN=∠BNM.
这是按我画的图形做的,如果图形画得不同,证明可能略有差异.