已知圆x^2+y^2+x-6y+m=0和直线x+2y-3=0交于P,Q两点,且OP垂直于OQ(0为坐标原点),求该圆的圆
1个回答

(-1/2,3),r=5/2

将圆方程化简为标准式有:

[x+(1/2)]^2+(y-3)^2=(37-4m)/4……………………………(1)

所以,圆心坐标为(-1/2,3)

联立直线与圆方程得到:

x^2+x+y^2-6y+m=0

x+2y-3=0

===> (2y-3)^2-(2y-3)+y^2-6y+m=0

===> 4y^2-12y+9-2y+3+y^2-6y+m=0

===> 5y^2-20y+(m+12)=0

===> y1+y2=4,y1y2=(m+12)/5

===> x1x2=(-2y1+3)(-2y2+3)=4y1y2-6(y1+y2)+9=4(m+12)/5-15

已知OP⊥OQ

则,Kop*Koq=-1

即:(y1/x1)*(y2/x2)=-1

===> y1y2+x1x2=0

===> (m+12)/5+4(m+12)/5-15=0

===> m+12-15=0

===> m=3

代入(2)式就有:

r^2=(37-4m)/4=25/4

所以,r=√(25/4)=5/2