th(x)的导数为1/ch^2(x)求arth(x)导数
2个回答

双曲正弦

sh z =(e^z-e^(-z))/2 (1)

双曲余弦

ch z =(e^z+e^(-z))/2 (2)

双曲正切

th z = sh z /ch z =(e^z-e^(-z))/(e^z+e^(-z)) (3)

双曲余切

cth z = ch z/sh z=(e^z+e^(-z))/(e^z-e^(-z)) (4)

反双曲正弦

arcsinh(x) = ln[x + sqrt(x^2 + 1)] (sqrt是指根号下)

反双曲余弦

arccosh(x) = ln[x + sqrt(x^2 - 1)]

反双曲正切

arctanh(x) = ln[sqrt(1 - x^2)/(1 - x)] =(1/2)ln[(1 + x) / (1 - x)]

[arth(x)]'=(1/2)ln'[(1 + x) / (1 - x)]

=(1/2)[(1-x)/(1+x)][(1+x)'(1-x)-(1+x)(1-x)']/(1-x)^2

=1/(1-x^2)

下面给出你以上函数的导函数公式,只需记下即可

(sinh(x))'=cosh(x)

(cosh(x))'=sinh(x)

(tanh(x))'=1/ch^2(x)

(coth(x))'=-1/sh^2(x)

(arcsinh(x))'=1/sqrt(x^2+1)

(arccosh(x))'=1/sqrt(x^2-1)

(arctanh(x))'=1/(1-x^2)