如图:△ABC和△ADE是等边三角形,AD是BC边上的中线.
2个回答

解题思路:根据等边三角形三线合一的性质可得AD为∠BAC的角平分线,根据等边三角形各内角为60°即可求得∠BAE=∠BAD=30°,进而证明△ABE≌△ABD,得BE=BD.

证明:∵△ABC和△ADE是等边三角形,AD为BC边上的中线,

∴AE=AD,AD为∠BAC的角平分线,

即∠CAD=∠BAD=30°,

∴∠BAE=∠BAD=30°,

在△ABE和△ABD中,

AE=AD

∠BAE=∠BAD

AB=AB,

∴△ABE≌△ABD(SAS),

∴BE=BD.

点评:

本题考点: 等边三角形的性质;全等三角形的判定与性质.

考点点评: 本题考查了全等三角形的证明和全等三角形对应边相等的性质,考查了等边三角形各边长、各内角为60°的性质,本题中求证△ABE≌△ABD是解题的关键.