1、作AH⊥BC,
则BH=AB*cosB=c*cosB,(1)
CH=AC*cosC=b*cosC,(2)
(1)+(2),
c*cosB+b*cosC=BH+CH=BC=a,
已知,b*cosC=2a*cosB-c*cosB,
b*cosC+c*cosB=a=2a*cosB,
cosB=1/2,
∴B=60°.
2、S△ABC=AH*BC/2=AH*4/2=5√3,
AH=5√3/2,
AH/BH=tanB=tan60°=√3,
BH=(5√3/2)/√3=5/2,
CH=BC-BH=4-5/2=3/2,
AC^2=AH^2+CH^2=75/4+9/4=21,
∴b=AC=√21.