如图,三角形ABC中,AB=AC,角BAC=90度,点D在线段BC上,角EDB=二分之一角C,BE
1个回答

证明:如图,取DF中点,作DF的垂直线交BC于点N,连接NF.于是就可以得到在三角形DNF中,有DN=FN,因为线段垂直平分线上的点到线段两端点的距离是相等的,所以呢角MDN=角NFD.那我们在证明三角形BEF和三角形DMN的关系就可以了.由第一问可知道角EBF=角MDN=角NFD22.5度,所以呢角FNB=45度且角MND=90度-22.5度=角EFB=67.5度.于是也就得到三角形BFN为等腰直角三角形,有BF=NF,这样我们就能用角边角证明得到三角形BEF和三角形DMN是全等的,有BE=DM,也就是BE=1/2DF