(a)证明cos(x-y)-cos(x+y)=2*sinx*siny (b)由此,证明 2sinθ(sinθ+sin3θ
1个回答

(a)证明:

左边=cos(x-y)-cos(x+y)

=(cosxcosy+sinxsiny)-(cosxcosy-sinxsiny)

=2sinxsiny

=右边

证毕

(b)证明:

由(1)的结论知:

左边=2sinθ(sinθ+sin3θ+sin5θ+sin7θ)

=2sinθsinθ+2sinθsin3θ+2sinθsin5θ+2sinθsin7θ

=[cos(θ-θ)-cos(θ+θ)]+[cos(θ-3θ)-cos(θ+3θ)]+[cos(θ-5θ)-cos(θ+5θ)]+[cos(θ-7θ)-cos(θ+7θ)]

=cos0-cos2θ+cos2θ-cos4θ+cos4θ-cos6θ+cos6θ-cos8θ

=1-cos8θ

=右边

证毕