证明三角恒等式证明:三角形中(tanA/2)^2+(tanB/2)^2+(tanC/2)^2=1恒成立...
1个回答

应该学过余弦定理吧

先化简下面这个式子

tan(a/2)=sin(a/2)/cos(a/2)

=[2sin(a/2)cos(a/2)]/[2cos²(a/2)]

=sina/(1+cosa)

故tan²(a/2)=sin²a/(1+cosa)²

=(1-cos²a)/(1+cosa)²

=(1-cosa)/(1+cosa)

(tanA/2)^2=(1-cosA)/(1+cosA)

=[1-(b²+c²-a²)/(2bc)]/[1+(b²+c²-a²)/(2bc)]

=[2bc-(b²+c²-a²)]/[2bc+(b²+c²-a²)]

=(2bc-b²-c²+a²)/(b²+c²+2bc-a²)

=[a²-(b-c)²]/[(b+c)²-a²]

=[(a+b-c)*(a-b+c)]/[(a+b+c)*(b+c-a)]

同理,有

(tanB/2)^2=[(a+b-c)*(-a+b+c)]/[(a+b+c)*(a+c-b)]

(tanC/2)^2=[(-a+b+c)*(a-b+c)]/[(a+b+c)*(b+a-c)]

故(tanA/2)^2+(tanB/2)^2+(tanC/2)^2

=[(a+b-c)*(a-b+c)]/[(a+b+c)*(b+c-a)]+[(a+b-c)*(-a+b+c)]/[(a+b+c)*(a+c-b)]+[(-a+b+c)*(a-b+c)]/[(a+b+c)*(b+a-c)]

=1