已知f(x)=sin⁴x+2(√3)sinxcosx-cos⁴x
(1)最小正周期
(2)f(x)的最小值及x的取值范围
(3)单调区间
f(x)=sin⁴x-cos⁴x-2(√3)sinxcosx=(sin²x+cos²x)(sin²x-cos²x)-(√3)sin2x
=sin²x-cos²x-(√3)sin2x=-cos2x-(√3)sin2x=-2[cos2xcos(π/3)+sin2xsin(π/3)]
=-2cos(2x-π/3)
Tmin=2π/2=π
mixf(x)=-2
由2kπ≤2x-π/3≤2kπ+π,π/3+2kπ≤2x≤2kπ+4π/3,
得单增区间:π/6+kπ≤x≤kπ+2π/3 K∈Z
由-π+2kπ≤2x-π/3≤2kπ,-2π/3+2kπ≤2x≤2kπ+π/3
得单减区间:-π/3+kπ≤x≤kπ+π/6 k∈Z