设∠MOB=θ
0≤θ≤60°
∠OMB=180-θ-30=150-θ
∠MBO=30
OM/sin∠MBO=OB/sin∠OMB
因为AB=a,所以OB=√3a/3
OM/sin30=(√3a/3)/sin(150-θ)
OM=(√3a/6)/sin(150-θ)
∠NOC=180-120-θ=60-θ
∠ONC=180-30-(60-θ)=90+θ
ON/sin∠NCO=OC/sin∠ONC
ON=(√3a/6)/sin(90+θ)
1/OM^2+1/ON^2
=(sin(150-θ)/(√3a/6))^2+(sin(90+θ)/(√3a/6))^2
整理得(6sin(2θ+π/6)+12)/a^2
0≤θ≤60°
所以π/6≤2θ+π/6≤3π/2
-1≤sin(2θ+π/6)≤1
6/a^2≤(6sin(2θ+π/6)+12)/a^2≤18/a^2
所以1/OM^2+1/ON^2的最小值为6/a^2
最大值为18/a^2