证明:1≤5sin四次方xcos四次方x+5sin平方xcos平方x+1≤41/16
1个回答

证明:①5sin^4 x·cos^4 x+5sinx·cosx+1≥1,不证自明,显然是成立的.②令t=sinx·cosx=【(1/2)·sin(2x)】=(1/4)·sin2x 又﹣1≤sin2x≤1,∴0≤sin2x≤1 ,∴0≤(1/4)·sin2x≤1/4 ∴t∈【0,1/4】 ∴5sin^4 x·cos^4 x+5sinx·cosx+1 =5t+5t+1 =5(t+1/2)-1/4 ,又t∈【0,1/4】,∴5(t+1/2)-1/4 ≤5(1/4+1/2)-1/4=41/16 即:5sin^4 x·cos^4 x+5sinx·cosx+1≤41/16 .综上,1≤5sin^4 x·cos^4 x+5sinx·cosx+1≤41/16