解题思路:先把方程变为一般式:(a+c)x2+2bx+a-c=0,由方程有两个相等的实数根,得到△=0,即△=(2b)2-4(a+c)(a-c)=4(b2+c2-a2)=0,则有b2+c2-a2=0,即b2+c2=a2,根据勾股定理的逆定理可以判断△ABC的形状.
△ABC是以a为斜边的直角三角形.
理由如下:
去括号,整理为一般形式为:(a+c)x2+2bx+a-c=0,
∵关于x的一元二次方程a(1+x2)+2bx-c(1-x2)=0有两个相等的实数根.
∴△=0,即△=(2b)2-4(a+c)(a-c)=4(b2+c2-a2)=0.
∴b2+c2-a2=0,即b2+c2=a2.
所以△ABC是以a为斜边的直角三角形.
点评:
本题考点: 根的判别式;勾股定理的逆定理.
考点点评: 本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.同时考查了勾股定理的逆定理.