A是△BCD平面外的一点,E、F分别是BC、AD的中点,
1个回答

解题思路:(1)假设EF与BD不是异面直线,则EF与BD共面,得到A、B、C、D在同一平面内,矛盾.

(2)取CD的中点G,利用三角形中位线的性质找出异面直线成的角∠FEG,把此角放在一个三角形中,

解此三角形,求出此角的大小.

(1)证明:用反证法.设EF与BD不是异面直线,则EF与BD共面,从而DF与BE共面,即AD与BC共面,所以A、B、C、D在同一平面内,这与A是△BCD平面外的一点相矛盾.故直线EF与BD是异面直线.(2)取CD的中点G,连接EG、FG...

点评:

本题考点: 异面直线的判定;异面直线及其所成的角.

考点点评: 本题考查异面直线的证明方法,及求异面直线成的角,属于中档题.