因为,(a-1)²≥0,|ab-2|≥0,
所以,只有当(a-1)²=0,|ab-2|=0时,(a-1)²+|ab-2|=0才成立,
则有:a-1=0,ab-2=0,
解得:a=1,b=2;
1/ab+1/[(a+1)(b+1)]+1/[(a+2)(b+2)]+...+1/[(a+2013)(b+2013)]
= 1/(1×2)+1/(2×3)+1/(3×4)+...+1/(2014×2015)
= (1-1/2)+(1/2-1/3)+(1/3-1/4)+...+(1/2014-1/2015)
= 1-1/2015
= 2014/2015