已知数列{a n }的首项a 1 =b(b≠0),它的前n项的和S n =a 1 +a 2 +…+a n (n≥1),并
1个回答

(1)证明:由已知条件得S 1=a 1=b.

S n=S 1p n-1=bp n-1(n≥1)

因为当n≥2时,S n=a 1+a 2++a n-1+a n=S n-1+a n,所以

a n=S n-S n-1=bp n-2(p-1)(n≥2)

从而

a n+1

a n =

b p n-1 (p-1)

b p n-2 (p-1) =p(n≥2) ,

因此a 2,a 3,a 3,a n,是一个公比为p的等比数列

(2)当n≥2时,

a n+1 S n+1

a n S n =

b p n-1 (p-1)b p n

b p n-2 (p-1)b p n-1 = p 2 ,

且由已知条件可知p 2<1,

因此数列a 1S 1,a 2S 2,a 3S 3,a nS n是公比为p 2<1的无穷等比数列,于是

lim

n→∞ ( a 2 S 2 + a 3 S 3 ++ a n S n )=

a 2 S 2

1- p 2 =

b 2 (p-1)p

1- p 2 =-

b 2 p

1+p .

从而

lim

n→∞ W n =

lim

n→∞ ( a 1 S 1 + a 2 S 2 + a 3 S 3 ++ a n S n )

=

lim

n→∞ a 1 S 1 +

lim

n→∞ ( a 2 S 2 + a 3 S 3 ++ a n S n )

= b 2 -

b 2 p

1+p =

b 2

1+p .