求(sin65+sin15sin10)/(sin25-cos15cos80)的值
1个回答

sin65+sin15sin10

=cos(90-65)+sin15sin10

=cos25+sin15sin10

=cos(15+10)+sin15sin10

=cos15cos10-sin15sin10+sin15sin10

=cos15cos10

sin25-cos15cos80

=cos(90-25)-cos15cos80

=cos65-cos15cos80

=cos(80-15)-cos15cos80

=cos80cos15+sin80sin15-cos15cos80

=sin80sin15

cos10=sin(90-10)=sin80

原式=cos15cos10/sin80sin15

=cos15/sin15

=cot15

附:

tan30=tan(2×15)=2tan15/(1-tan²15)=√3/3

(√3/3)tan²15+2tan15-√3/3=0

△=2²-4×(√3/3)×(-√3/3)=16/3

√△=4√3/3

tan15=(-2±4√3/3)/(2√3/3)=-√3±2

∵tan15>0

∴tan15=2-√3

则cot15=1/(2-√3)=2+√3