解题思路:根据中位线定理证明MF∥BC,且MF=[1/2]BC,根据AD=BC证明EM=MF,∠MEF=∠MFE,根据平行线同位角相等,证明∠MEF=∠AHF,∠MFE=∠BGF.可以求证∠AHF=∠BGF.
证明:连接AC,作EM∥AD交AC于M,连接MF.如下图:
∵E是CD的中点,且EM∥AD,
∴EM=[1/2]AD,M是AC的中点,又因为F是AB的中点
∴MF∥BC,且MF=[1/2]BC.
∵AD=BC,
∴EM=MF,三角形MEF为等腰三角形,即∠MEF=∠MFE.
∵EM∥AH,∴∠MEF=∠AHF
∵FM∥BG,∴∠MFE=∠BGF
∴∠AHF=∠BGF.
点评:
本题考点: 三角形中位线定理;平移的性质.
考点点评: 考查平行线对角相等,同位角相等,中位线平行且等于[1/2]对应边,等腰三角形底角相等.