解一元四次方程,要过程x^4+2x^3+x^2-1=0
2个回答

x ^ 4 + 2 x ³ + x ² - 1 = 0

x ²(x ² + 2 x + 1)- 1 = 0

x ²(x + 1)² - 1 = 0

【 x(x + 1)+ 1】【 x(x + 1)- 1 】= 0

(x ² + x + 1)(x ² + x - 1)= 0

∴ x ² + x + 1 = 0 ①

x ² + x - 1 = 0 ②

① x ² + x = - 1

x ² + x + (1 / 2)² = - 1 + (1 / 2)²

(x + 1 / 2)² = - 1 + 1 / 4

(x + 1 / 2)² = - 3 / 4

∵ (x + 1 / 2)² ≥ 0

∴ ① 方程无解.

② x ² + x = 1

x ² + x + (1 / 2)² = 1 + (1 / 2)²

(x + 1 / 2)² = 1 + 1 / 4

(x + 1 / 2)² = 5 / 4

x + 1 / 2 = ± √5 / 2

x = ± √5 / 2 - 1 / 2

x1 = √5 / 2 - 1 / 2 = (√5 - 1)/ 2

x2 = - √5 / 2 - 1 / 2 = (- √5 - 1)/ 2

综上,x = (√5 - 1)/ 2 或 (- √5 - 1)/ 2

参考公式:(平方差公式:a ² - b ² = (a + b)(a - b))